Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Chem ; 92: 107484, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33865034

RESUMO

N-(4-(substituted)-3-(trifluoromethyl) phenyl) isobutyramides and their N-ethyl analogues (flutamides) are versatile scaffolds with a wide spectrum of biological activities. A series of new N-(4-(substituted)-3-(trifluoromethyl) phenyl) isobutyramides (8a-t) and their N-ethyl analogous (9a-t) were synthesized and characterized. The inhibitory potential of the synthesized compounds on the viability of three human cancer cell lines HEP3BPN 11 (liver), MDA-MB 453 (breast), and HL 60 (leukemia) were assessed. Among all the compounds 8 L, 8q, 9n and 9p showed higher inhibitory activity on the viability of HL 60 than the standard methotrexate. These lead molecules were then tested for their potential to inhibit the activity of proangiogenic cytokines. The compound 9n showed significantly better inhibition against two cytokines viz. TNFα and Leptin as compared to the standard suramin, while 9p has activity comparable to suramin against IGF1, VEGF, FGFb, and Leptin. The 8q is found to be strong antiangiogenic agent against IGF1, VEGF and TGFß; while 8 L has showed activity against TNFα, VEGF, and Leptin inhibition. Furthermore antioxidant potential of 8a-t and 9a-t compounds was screened using DPPH, OH and SOR radical scavenging activities. The OH radical scavenging activity of 8c and DPPH activities of 9n as well as 9o are significant as compared to respective standards ascorbic acid and α-tocopherol. The 8c, 9p and 9 h have also exhibited potential antioxidant activity. Additionally, we present in silico molecular docking data to provide the structural rationale of observed TNFα inhibition against newly synthesized compounds. Overall, the synthesized flutamide derivatives have not only anticancer activity, but also possess dual inhibitory effect (anti-angiogenesis and antioxidant) and hence can act as a promising avenue to develop further anticancer agents.


Assuntos
Amidas/farmacologia , Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Citocinas/antagonistas & inibidores , Amidas/síntese química , Amidas/química , Inibidores da Angiogênese/síntese química , Inibidores da Angiogênese/química , Antineoplásicos/síntese química , Antineoplásicos/química , Antioxidantes/síntese química , Antioxidantes/química , Compostos de Bifenilo/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/biossíntese , Humanos , Radical Hidroxila/antagonistas & inibidores , Simulação de Acoplamento Molecular , Picratos/antagonistas & inibidores
2.
Mol Divers ; 25(3): 1679-1700, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32737682

RESUMO

Leishmaniasis is one of the most neglected tropical diseases that demand immediate attention to the identification of new drug targets and effective drug candidates. The present study demonstrates the possibility of using threonine synthase (TS) as a putative drug target in leishmaniasis disease management. We report the construction of an effective homology model of the enzyme that appears to be structurally as well as functionally well conserved. The 200 nanosecond molecular dynamics data on TS with and without pyridoxal phosphate (PLP) shed light on mechanistic details of PLP-induced conformational changes. Moreover, we address some important structural and dynamic interactions in the PLP binding region of TS that are in good agreement with previously speculated crystallographic estimations. Additionally, after screening more than 44,000 compounds, we propose 10 putative inhibitor candidates for TS based on virtual screening data and refined Molecular Mechanics Generalized Born Surface Area calculations. We expect that structural and functional dynamics data disclosed in this study will help initiate experimental endeavors toward establishing TS as an effective antileishmanial drug target.


Assuntos
Antiprotozoários/química , Carbono-Oxigênio Liases/química , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Sequência de Aminoácidos , Antiprotozoários/farmacologia , Sítios de Ligação , Carbono-Oxigênio Liases/antagonistas & inibidores , Descoberta de Drogas/métodos , Inibidores Enzimáticos/farmacologia , Leishmania major/enzimologia , Conformação Molecular , Ligação Proteica , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade
3.
J Mol Model ; 26(8): 218, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32720228

RESUMO

Leishmaniasis is a tropical neglected disease that imposes major health concerns in many endemic countries worldwide and requires urgent attention to the identification of new drug targets as well as drug candidates. In the current study, we propose homoserine kinase (HSK) inhibition as a strategy to induce pathogen mortality via generating threonine deficiency. We introduce a homology-based molecular model of leishmanial HSK that appears to possess all conserved structural as well as functional features in the GHMP kinase family. Furthermore, 200 ns molecular dynamics data of the enzyme in open and closed state attempts to provide the mechanistic details involved in the substrate as well as phosphate binding to this enzyme. We discuss the structural and functional significance of movements involved in various loops (motif 1, 2, 3) and lips (upper and lower) in the transition of leishmanial HSK from closed to open state. Virtual screening data of more than 40,000 compounds from the present investigation tries to identify a few potential HSK inhibitors that possess important features to act as efficient HSK inhibitors. These compounds can be considered an effective starting point for the identification of novel drug-like scaffolds. We hope the structural wealth that is offered in this report will be utilized in designing competent experimental and therapeutic interventions for leishmaniasis management. Graphical abstract.


Assuntos
Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/química , Tripanossomicidas/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Catálise , Sequência Conservada , Inibidores Enzimáticos/farmacologia , Humanos , Leishmania/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Ligação Proteica , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Tripanossomicidas/farmacologia
4.
Comb Chem High Throughput Screen ; 23(8): 723-739, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32321396

RESUMO

OBJECTIVE: The study aims at the derivatization of "Phthalides" and synthesizes 3- arylaminophthalides & 3-indolyl-phthalides compounds, and evaluates their anti-tubercular and antioxidant activities. The study has also intended to employ the in silico methods for the identification of possible drug targets in Mycobacterium and evaluate the binding affinities of synthesized compounds. METHODS: This report briefly explains the synthesis of phthalide derivatives using ammonium chloride. The synthesized compounds were characterized using spectral analysis. Resazurin Microtiter Assay (REMA) plate method was used to demonstrate the anti-mycobacterial activity of the synthesized compounds. An in-silico pharmacophore probing approach was used for target identification in Mycobacterium. The structural level interaction between the identified putative drug target and synthesized phthalides was studied using Lamarckian genetic algorithm-based software. RESULTS AND DISCUSSION: In the present study, we report an effective, environmentally benign scheme for the synthesis of phthalide derivatives. Compounds 5c and 5d from the current series appear to possess good anti-mycobacterial activity. dCTP: deaminasedUTPase was identified as a putative drug target in Mycobacterium. The docking results clearly showed the interactive involvement of conserved residues of dCTP with the synthesized phthalide compounds. CONCLUSION: On the eve of evolving anti-TB drug resistance, the data on anti-tubercular and allied activities of the compounds in the present study demonstrates the enormous significance of these newly synthesized derivatives as possible candidate leads in the development of novel anti-tubercular agents. The docking results from the current report provide a structural rationale for the promising anti-tubercular activity demonstrated by 3-arylaminophthalides and 3-indolyl-phthalides compounds.


Assuntos
Cloreto de Amônio/química , Antituberculosos/síntese química , Benzofuranos/síntese química , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Algoritmos , Antioxidantes/química , Antituberculosos/farmacologia , Benzofuranos/farmacologia , Desenho de Fármacos , Humanos , Radical Hidroxila/química , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Nucleotídeo Desaminases/metabolismo , Relação Estrutura-Atividade
5.
J Biomol Struct Dyn ; 38(4): 1168-1184, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30898030

RESUMO

Flavonoids correspond to a major class of polyphenolic phytochemicals with flavone as major parent scaffold. This class of compounds is attributed with very rich nutritional as well as therapeutic values. The present study focuses on a panel of 16 flavonoid molecules that are demonstrated to exhibit various bioactivities like anti-angiogenic, anti-inflammatory as well as possess antioxidant potential. The electronic basis of these bioactivities is rarely explored, and structural basis of flavonoid-induced cyclooxygenase (COX) inhibition has still remained an uncharted area. The current report thus focuses on providing an electronic explanation of these bioactivities using density functional theory-based quantum chemical descriptors. We also attempt to provide a structure-activity relation model for COX by inhibition of these 16 flavonoids using molecular docking. Here, we report molecular dynamics data from 16 flavonoid-COX-2 complexes performed for 50 nanoseconds each that demonstrates key structural and dynamic aspects of flavonoid-based COX inhibition in light of observed experimental facts. Interaction analysis and evaluation of side-chain dynamics presented in current study are well in agreement with the empirical study and is hoped to pave new avenues towards design and development of COX-2 selective chemical agents. Abbreviations2'HFN-2'hydroxy flavonone2D2 dimension3D3 dimension3H7MF3-hydroxy-7-methoxy flavone4'HFN-4'hydroxy flavonone4'MF- 4'methoxy flavone7HFN7-hydroxy flavononeCHARMMChemistry at Harvard Macromolecular MechanicsCOXcyclooxygenaseCOX-1cyclooxygenase-1COX-2cyclooxygenase-2DMdipole momentDPPH- 2, 2diphenyl-1-picryl hydrazineEAelectron affinitiesEGFRepidermal growth factor receptorE-HOMOHighest occupied molecular orbital energyE-LUMOLowest unoccupied molecular orbital energyEPAeicosapentaenoic acidFROG2FRee Online druG conformation generationGAGenetic AlgorithmGROMACSGROningen MAchine for Chemical SimulationsHOMOHighest occupied molecular orbitalIPIonization potentialLOMOLowest unoccupied molecular orbitalMDMolecular dynamicsMOMolecular orbitalNAMDNanoscale Molecular DynamicsNSAIDsNon-Steroidal Anti Inflammatory DrugsNsnanosecondsNVEEnsemble-constant-energy, constant-volume, Constant particle ensemblePDB-IDProtein Data Bank IdentifierPMEParticle Mesh EwaldPyRXPython PrescriptionRMSDRoot-Mean-Square DeviationRMSFRoot-Mean-Square FluctuationRLSreactive lipid speciesROSReactive Oxygen SpeciesSASAsolvent accessible surface areaSMILESsimplified molecular-input line-entry systemSORsuperoxide anion radicalUFFUniversal force fieldVEGFvascular endothelial growth factorVEGFRvascular endothelial growth factor receptorVMDVisual molecular dynamicsCommunicated by Ramaswamy H. Sarma.


Assuntos
Flavonoides/química , Flavonoides/farmacologia , Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Teoria Quântica , Eletricidade Estática , Relação Estrutura-Atividade
6.
3 Biotech ; 9(11): 431, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31696036

RESUMO

There are many online resources that focus on chemical diversity of natural compounds, but only handful of resources exist that focus solely on flavonoid compounds and integrate structural and functional properties; however, extensive collated flavonoid literature is still unavailable to scientific community. Here we present an open access database 'FlavoDb' that is focused on providing physicochemical properties as well as topological descriptors that can be effectively implemented in deducing large scale quantitative structure property models of flavonoid compounds. In the current version of database, we present data on 1, 19,400 flavonoid compounds, thereby covering most of the known structural space of flavonoid class of compounds. Moreover, effective structure searching tool presented here is expected to provide an interactive and easy-to-use tool for obtaining flavonoid-based literature and allied information. Data from FlavoDb can be freely accessed via its intuitive graphical user interface made available at following web address: http://bioinfo.net.in/flavodb/home.html.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...